US009191391B1

a2 United States Patent

Stillerman

US 9,191,391 B1
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(1)

(52)

(58)

CROSS-DOMAIN OBJECT MODELS FOR
SECURELY SHARING INFORMATION
BETWEEN NETWORK SECURITY DOMAINS

Applicant: Architecture Technology Corporation,
Minneapolis, MN (US)

Inventor: Matthew A. Stillerman, Ithaca, NY
(US)

Assignee: Architecture Technology Corporation,
Minneapolis, MN (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/577,741

Filed: Dec. 19, 2014

Int. CI.

GO6F 7/04 (2006.01)

HO4L 29/06 (2006.01)

GO6F 21/62 (2013.01)

US.CL

CPC HO04L 63/10 (2013.01); GOGF 21/6218

(2013.01)
Field of Classification Search
CPC .o HO4L 63/10; GOGF 21/6218
USPC e 726/30
See application file for complete search history.

CLIENT APPLICATION

OBJECT
PROXIES
£A

PROTECTED SUBSYSTEM

» cDom "
CONTROLLER
i ~— FRGTESTED

-
1 OBJECT REPOSITORY |

BA

(56) References Cited
U.S. PATENT DOCUMENTS
2004/0204949 Al1* 10/2004 Shajietal.cccocevveenenn. 705/1
2006/0053285 Al* 3/2006 Kimmeletal. 713/166
2014/0201811 Al* 7/2014 Sacketal.ccoe.. 726/3

* cited by examiner

Primary Examiner — Mohammad W Reza
(74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.

(57) ABSTRACT

Techniques are described for controlling transfer of informa-
tion in a secure manner across multiple network security
domains. As described herein, cross-domain sharing may be
facilitated by use of a common model that is shared by par-
ticipants from the different network security domains. An
example system is described in which a plurality of network
domains comprises a respective set of client computing
devices. A cross-domain object model specification specifies
object classes for cross-domain objects accessible to the cli-
ent computing devices. For each of the object classes, the
cross-domain object model specification defines a plurality of
data fields and specifies which of the data fields of the respec-
tive object class can be exposed to each of the respective
network domains. A protected object repository positioned
within each of the network domains stores an authorized
portion of each of the cross-domain objects in accordance
with the cross-domain object model specification.

30 Claims, 2 Drawing Sheets

2

«

" DOMAN .,
e

CLIENT APPLICATION
@£

OBJECT
PROXIES
g

%, | PROTECTED SUBSYSTEM /

1B 7
/" [PROTECTED SUBSYSTEM | ",
8B

PROXIES

CLIENT APPLICATION
48

U.S. Patent Nov. 17, 2015 Sheet 1 of 2 US 9,191,391 B1

" DOMAIN)
CLIENT APPLICATION
4
~ DOMAIN
OBJECT ¢
PROXIES
6A
CLIENT APPLICATION
i
/A
PROTECTED SUBSYSTEM OBJECT
CDOM PROXIES
203 CONTROLLER 6C
F—— = - (PROTECTED T
| OBJECTREPOSITORY | | NODES
| | 16
I ese | (WMODELSPEC
L~—____=< i 18 ,
INTERFACE " [PROTECTED SUBSYSTEM
12 8
XN // 4 4
|| ~ D " s /
Rl IR\ S0]
U~ | < N s ¥ e
R - 4 /
vy | GUARD [~ / /
GUARD 22c / /
22A
AN
N X GUARD
U T 28
NN powan —Z
NN 108 T~
. VAN -
PROTECTED SUBSYSTEM | .
8B

OBJECT
PROXIES
6B

CLIENT APPLICATION
48

FIG. 1

U.S. Patent

FIG. 2

Nov. 17, 2015

Sheet 2 of 2

US 9,191,391 B1

42\

RECEIVE INSTRUCTION

l

44\

VERIFY THAT INSTRUCTION
COMPLIES WITH MODEL
SPECIFICATION

45\ I

'

REJECT

46\

IN RESPONSE TO AFFIRMATIVELY
VERIFYING THAT THE
INSTRUCTION COMPLIES,
EXECUTE INSTRUCTION

l

48\

DETERMINE CHANGES

PROPAGATE CHANGES IN
ACCORDANCE WITH CROSS-
DOMAIN OBJECT MODEL

US 9,191,391 B1

1
CROSS-DOMAIN OBJECT MODELS FOR
SECURELY SHARING INFORMATION
BETWEEN NETWORK SECURITY DOMAINS

TECHNICAL FIELD

The disclosure relates to object sharing. More specifically,
this disclosure relates to cross-domain information flows.

BACKGROUND

A network security domain is a network for which every
authorized user satisfies a certain level of trust (i.e., a security
clearance) and all of the data is at least nominally considered
to be of a certain level of sensitivity (i.e., a security classifi-
cation). Different network security domains may be used to
handle tasks of different security levels for a given organiza-
tion. In some cases, network security domains might belong
to a coalition of partners that are conducting joint operations.

In many situations, network security domains are con-
nected to one another, but the different domains are extremely
cautious about what information is allowed to pass between
them. As a result, most cross-domain information flows
require some human intervention to ensure that the require-
ments for releasability are met. In many cases the data traffic
between network security domains is transferred by indi-
vidual, authorized administrators after reliable human review.
Such intervention is expensive and slow, and can form a
bottleneck in operations. Unfortunately, fully automated
sharing of information across security domain boundaries is
also fraught with difficulties. This is particularly so when the
data to be shared is arbitrary, or sufficiently free-form to
encode a wide range of sensitive information.

SUMMARY

In general, the disclosure is directed to the transfer of
information in a secure manner across multiple network secu-
rity domains. As described herein, cross-domain sharing may
be facilitated by use of a common model that is shared by
participants from the different network security domains. The
common model, also referred to herein as a cross-domain
object model (CDOM), provides for specification of a collec-
tion of cross-domain objects for which all or portions are
mirrored in each domain and used to control information flow
between the domains in a manner that maintains information
integrity and security.

More specifically, a model specification defines object
classes for the cross-domain object, and defines which fields
ordata types of each object class can be exposed to each of the
domains in the network. Each domain, therefore, may main-
tain a respective, authorized portion or subset of each of the
objects created in accordance with the object model, and each
portion maintained by a given one of the domains may be
viewed as a sanitized version of the overall object that con-
forms to the model specification.

In one example, each domain includes a protected sub-
system that stores the domain-specific version of the objects
in an object repository. A CDOM controller within each pro-
tected subsystem that controls how this collection of objects
may be updated by less-trusted entities in each security
domain, and to what extent such updates, originating in one
domain will be mirrored in or otherwise reflected to the other
domains. Each participant may, in a well-controlled manner
that is architected by the protected subsystems within each
domain based on allowed security, access the objects in their
own domain for read, update and object creation according to

10

20

35

40

45

2

the restrictions set forth in the model specification. Changes
to objects in one domain are automatically sanitized by the
respective subsystem and synchronized to counterpart
objects managed by the protected subsystems in the other
domains, thereby providing automated cross-domain sharing
of restricted data in compliance with the cross-domain object
model. Overt security policy about which information is to be
shared is enforced by mirroring, in each domain, a version of
each object in the common model that is sanitized for that
domain. Participants and their client software communicate
between domains only by updating the mirrored objects in
their local domain. The CDOM subsystem propagates these
updates (messages specifying new objects, or updates to the
fields of existing objects) to mirrored copies in other domains
in a manner that respects the sanitization of the model objects
in the recipient domain. The CDOM cross-domain update
messages may be more difficult to exploit as a covert channel
than messages sent directly by clients or their software,
because illegitimate updates will have visible and persistent
effects in the shared object model, and because the CDOM
subsystem can reduce the precision and obscure the timing of
updates that are propagated.

Example techniques of this disclosure include receiving,
by a first computing device in a first domain of the plurality of
domains, an instruction from a second computing device. The
instruction may comprise an interaction with an object model.
The first computing device verifies that the instruction com-
plies with a model specification. The model specification is a
set of restrictions for one or more computing devices in each
of' the plurality of domains. In response to affirmatively veri-
fying that the instruction complies with the model specifica-
tion, the first computing device executes the instruction.

In one example, the disclosure describes a method for
ensuring integrity in cross-domain objects. Example tech-
niques of this disclosure include receiving, by a first comput-
ing device in a first domain of the plurality of domains, an
instruction from a second computing device. The instruction
may comprise an interaction with an object model. The first
computing device verifies that the instruction complies with a
model specification. The model specification is a set of
restrictions for one or more computing devices in each of the
plurality of domains. In response to affirmatively verifying
that the instruction complies with the model specification, the
first computing device executes the instruction.

In another example, the disclosure describes a computing
device in a first domain of a plurality of domains, wherein the
computing device is a first computing device, configured to
receive an instruction from a second computing device,
wherein the instruction comprises an interaction with an
object model, verify that the instruction complies with a
model specification, wherein the model specification com-
prises restrictions for one or more computing devices in each
of the plurality of domains, and in response to affirmatively
verifying that the instruction complies with the model speci-
fication, execute the instruction.

In another example, the disclosure describes a computer-
readable storage medium storing commands that, when
executed, cause one or more processors of a first computing
device in a first domain of a plurality of domains to receive an
instruction from a second computing device, wherein the
instruction comprises an interaction with an object model,
verify that the instruction complies with a model specifica-
tion, wherein the model specification comprises restrictions
for one or more computing devices in each of the plurality of
domains, and in response to affirmatively verifying that the
instruction complies with the model specification, execute the
instruction.

US 9,191,391 B1

3

In another example, the disclosure describes an apparatus
in a first domain of a plurality of domains, the apparatus
comprising means for receiving an instruction from a second
computing device, wherein the instruction comprises an
interaction with an object model, means for verifying that the
instruction complies with a model specification, wherein the
model specification comprises restrictions for one or more
computing devices in each of the plurality of domains, and
means for executing the instruction in response to affirma-
tively verifying that the instruction complies with the model
specification.

The details of one or more examples of the disclosure are
set forth in the accompanying drawings and the description
below. Other features, objects, and advantages of the disclo-
sure will be apparent from the description and drawings, and
from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of an example network system in
which a set of secure cross-domain applications share infor-
mation across multiple security domains in accordance with
one or more techniques of the current disclosure.

FIG. 2 is a flow diagram illustrating example operations of
a computing device that implements techniques of securely
updating cross-domain object models, in accordance with
one or more aspects of the present disclosure.

DETAILED DESCRIPTION

In general, this disclosure relates to automated cross-do-
main sharing of information in a secure manner across mul-
tiple network security domains. As described herein, cross-
domain sharing may be facilitated by use of a common model,
referred to as a cross-domain object model (CDOM), that is
shared by participants from the different network security
domains. The CDOM provides a collection of objects having
at least portions that are mirrored in each domain and syn-
chronized to control information flow between the domains
and a model specification, which defines a set of restrictions
for that domain’s object proxies.

In one example implementation, CDOM controllers in
each domain exchange messages to maintain sanitized con-
sistency of the object models on either side of a boundary
between security domains. In this way, each domain may
maintain a respective portion of the object model, and each
portion may be sanitized for the respective domain. Thatis, an
object may be “sanitized” in that the object has been limited
such that only a portion of the object is visible or accessible to
a client in a given domain, and the portion that is visible or
accessible is only the portion that the model specification
specifies as relevant and authorized for that respective
domain. Entities can access the sanitized, domain-specific
versions of the objects in their own domain for read, update,
and object creation. The respective CDOM controller in one
domain monitors changes made to the objects in that domain
and propagates the changes, in sanitized form, to the CDOM
controllers in other domains based on the model specification.
In other words, the CDOM controller will detect changes
made to an object, reference the cross-domain model speci-
fication, and propagate the changes made to the object to
CDOM controllers in other domains that have access to the
edited portion of that object. Therefore, each CDOM control-
ler, in combination with the shared model specification,
ensures integrity.

Thus, to the degree allowed by security, participants will
share a common model of the computing environment and

30

35

40

45

65

4

objects therein, i.e., the CDOM. Use of the CDOM may
sharply limit any potential for “consistency” messages
between security domains to inadvertently reveal secrets, and
to be used as a covert channel for leaking secure information.
Further, as described herein, consistency messages between
the security domains for object synchronization may pro-
tected from access to clients in each security domain as they
are sent across boundary guard devices by a protected sub-
system.

As such, the techniques described herein may provide cer-
tain advantages over conventional systems, where cross-do-
main information flows can be initiated directly by less-
trusted participants or software applications and may lead to
unauthorized disclosure and can compromise information
integrity for recipients. In some conventional approaches,
restricting and sanitizing such flows can cause inconsistency
of the information state between domains, leading to failures
of coordination by participants or failures/errors within soft-
ware applications executing on those domains. Further,
requiring manual intervention as inter-domain messages
cross between domains is costly, has high latency, and is not
scalable. All of these potential problems can be mitigated by
the techniques described herein, leading to higher assurance,
better performance and lower cost.

As the techniques described herein make use of a cross-
domain object model (CDOM), a large portion of plausible
cross-domain information sharing may be construed as model
consistency messages. When viewed in this way, the full
scope of information that is to cross between domains can be
analyzed from a security perspective, as well as giving insight
into the degree of inconsistency between domains that may
develop over time. The CDOM architecture, including send-
ing sanitized consistency messages between explicitly known
information state representations—may offer several other
advantages. Untrusted clients do not have control over the
timing and content of consistency messages, thus sharply
limiting their danger as covert channels. In contrast with a
state, or model, that is buried inside of untrusted client appli-
cations, the flow of information into and out of the state may
be easily monitored. Further, the state in each domain may be
shared between all clients in that domain, thereby promoting
intra-domain coordination. Enforced model invariants may
prevent the assertion or flow of corrupt information, regard-
less of whether that corrupt information is malicious or not. If
the model encompasses the whole external “situation,” then
analysis may reveal inference and aggregation threats that
result from combining permitted cross-domain flows. Finally,
the machinery for maintaining objects and for sanitizing and
propagating updates between domains is automatically gen-
erated from the analyzed and approved specification, thus
ensuring that the specification is followed, while limiting the
need to analyze untrusted client applications. This means that
conventional applications that automatically share informa-
tion across domains may necessarily have to be trusted. In
contrast, clients sharing via CDOM will not require trust.

Cross-domain situational awareness applications (e.g.,
involving shared maps) may be used with CDOM. However,
CDOM may also apply to a wide range of other applications
and data types. For example, an object-oriented model of chat
may be shared, including a chat session object, objects rep-
resenting the participants, a “factory” object that coordinates
setting up new sessions, or an index of archived and ongoing
chats. All of these objects could be shared across domains,
suitably sanitized. Sending of arbitrary files across domains is
conventionally problematic but, according to the techniques
described herein, may be neatly formalized and encompassed
within a CDOM model and the extent of sending files and data

US 9,191,391 B1

5

objects is permissible may be readily defined within the
CDOM model. A natural CDOM model for make use of a
shared directory or “folder” into which files may be placed,
that will then be accessible in the other domain. Within this
model of shared files, various restricted views can be natu-
rally understood and implemented. As an example, consider a
document that is shared between security domains, where
updates on one side may not be propagated automatically to
the other side, yet information that an update has occurred
may be propagated. Thus, a user within the second side may
learn that his copy of the document is now stale, which may be
useful to know, and possibly less sensitive than the content of
the update.

FIG. 1 is a block diagram of an example network system in
which a set of secure cross-domain applications share infor-
mation across multiple security domains in accordance with
one or more techniques of the current disclosure. In the
example of FIG. 1, network system 2 includes three different
network security domains 10A-10C, with each domain 10A-
10C containing client computing devices for executing client
applications 4A-4C having object proxies 6A-6C for inter-
acting with objects within object repositories 20. Each of the
objects may, for example, represent securely-managed
objects utilized by a distributed application 4 that executes
across domains 10. Each of the objects may comprise, for
example, executable software instructions and/or state date
associated with application 4.

Object proxies 6 of client applications 4 are shown as one
example mechanism by which the client applications com-
municate with object repository 20 and other communication
mechanisms may be used, such as remote procedure calls,
application programming interfaces (API) and the like. In this
example, each domain 10A-10C is connected to and commu-
nicative with each other domain via a guard 12A-12C located
between each domain.

As described herein, network system 2 implements a cross-
domain object model (CDOM) with respect to a collection of
software objects, and portions of the objects are stored in
repositories 20 of protected sub-systems 8 in accordance with
the CDOM. In particular, the CDOM defines the object
classes used within the domains and, for each object class,
defines which fields or data types can be exposed to each of
the respective domains in the network. The cross-domain
model specification 18 is stored within or otherwise acces-
sible to each protected subsystem 8A-8C. Each domain 10
maintains a respective, authorized portion or subset of each of
the objects that conform to the object model, and each portion
maintained by a given one of the domains may be viewed as
a sanitized version of the overall object that conforms to the
model specification.

In general, each object is a data structure or record having
a set of named fields and methods. Each field of an object has
a value that is either a value from a primitive data type or it is
a reference to an object. Some languages have a third kind of
value—values from user-defined types (including procedural
sub-programs) that are not classes of objects. A class of
objects is a subset of all possible objects in which all of the
objects have the same fixed, specified set of field names. In
some programming languages, in which classes are specified
the fields are typed. Each field is associated with a fixed type,
either a primitive type, a user-defined type, or a class. The
objects that are considered to be members of a class are those
with exactly the specified field names, with each field having
a value of the specified type—either a primitive type, a user-
defined type, or a reference to some object of the specified
class.

20

25

30

35

40

45

55

6

Insome examples, each of domains 10A-10C (domains 10)
may be a local network comprising one or more client com-
puting devices. In other examples, domains 10 may be a
group of client computing devices and devices on a network
that are administered as a unit with common rules and proce-
dures. Some networks may have multiple domains. For
instance, a large network may have several domains based on
the needs of each set of users. Domains 10 may each have a
domain controller that governs all basic domain functions and
manages network security.

Guards 22A-22C are hardware or software components
that implement a firewall, or a system designed to prevent
unauthorized access to or from a private network. Guards
22A-22C can be implemented in both hardware and software,
or a combination thereof. Communications between a pair of
domains may pass through the interposed guard. The guard is
intended to prevent (i.e., block) unauthorized communica-
tions. Guards 22A-22C may prevent unauthorized Internet
users from accessing private domains 10A-10C that are con-
nected to the Internet, especially intranets. Messages entering
or leaving domains 10A-10C may pass through the guards
22A-22C, which examines each message and blocks those
that do not meet the specified security criteria. For example,
only messages that contain a certain structure or a particular
coded message may be able to pass through any of guards
22A-22C.

As discussed above, object proxies 6 of client applications
4 are shown as one example mechanism by which the client
applications communicate with object repository 20 and
other communication mechanisms may be used. In this
example, object proxies 6 corresponds to objects stored in
objectrepository 20 and are integrated into client applications
4A-4C. Client applications 4A-4C (client applications 4) uti-
lize object proxies 6 to read and update portions of the cor-
responding objects within the object repository 20 of their
respective domains. Each of client applications 4 may be a
computer program, web service, enterprise application or any
other application having executable software that has access
to their domain’s respective object proxy 6. Although not
shown, it is understood that client applications 4 typically
execute on client computing devices, such as desktop com-
puters, laptops, mobile devices and the like. In other
examples, client applications 4 may interact with objects in
object repository 20 in other ways that do not include object
proxies 6.

As discussed above, the scope of each object within com-
puting environment 2 may be viewed as potentially spanning
all network domains 10 such that each object instantiated in
accordance with CDOM specification 18 is unique across all
of the network domains. As such, the scope of each object
created in any of network domains 10 may be viewed as
spanning the network domains, and each individual object
within a given domain’s object repository 20 may only rep-
resent an authorized portion of the entire object in accordance
with CDOM specification 18. Each portion of the object in
any given network domain 10 is controlled by the respective
one of subsystems 8 in that network domain so as to conform
to the respective model specification 18 each respective
domain 10. For example, a first portion of the object as stored
in object repository 20 of protected subsystem 8A of domain
10A may only provide access to a subset of the object’s
variables or methods as defined by the object model set forth
by model specification 18. A corresponding portion of that
object stored within protected subsystem 8B of domain 10B
may consist of a different portion of the entire, cross-domain
object, and that portion conforms with model specification 18
based upon the particular security and authorization level

US 9,191,391 B1

7

(i.e., level of trust) of domain 10B. In other examples, corre-
sponding portions of the cross-domain objects in the different
object repositories 20 may provide access to all of the vari-
ables typically accessible for the object as defined by the
object model, but with a lesser degree of precision (e.g.,
revealing just the sign of a numerical variable, i.e., whether
the variable positive or negative). Further, each object reposi-
tory may only hold object portions for a certain subset of the
cross-domain objects created in accordance with model
specification 18. For instance, if model specification 18
includes a restriction that domain 10A is not to have any
access to a particular object, object repository 20 in protected
subsystem 8A may exclude any portion of that particular
cross-domain object. Further, any updates to that object in
domains 10B or 10C may not be sent to domain 10A, as
domain 10A does not have access to any portion of that
object. In this respect, the object repository in each domain
may be a sanitized version of the entire object model defined
by the model specification. In this way, each object within
object repository 20 may represent a sanitized portion of the
collective object as distributed throughout the set of domains
10, and object instances in different domains 10 that corre-
spond to the same object within protected subsystems 8 may
comprise different portions of the overall object that are
appropriate for the particular security domain in compliance
with model specification 18.

As further illustrated below, model specification 18 utilizes
a syntax defining annotations that allow classes of cross-
domain objects for a cross-domain object model to easily be
specified, and the syntax defining annotations that allow
specification of which fields or data types or degrees of pre-
cision thereof of each object class that is to be exposed to each
particular network domain 10A-10C of network 2. Moreover,
model specification 18 utilizes a syntax defining annotations
that allow, for each domain 10, restrictions to specified as to
the accessibility of particular data within the objects in object
repository 20. Further, model specification 18 may include
annotations that allow specification of restrictions with
regards to actions that may be applied to the objects or por-
tions thereof, such as the creation and deletion of objects in
object repository 20. For instance, some domains may be able
to only create objects belonging to a particular class of
objects. In some examples, some domains may be able to only
delete objects belonging to a particular class of objects.

In some example implementations, model specification 18
may include annotations that allow provide an additional
degree of granularity by further specifying which fields and
data types for each object class are accessible to individual
applications 4 or computing devices in each of domains 10. In
this way, certain domains may only have access to particular
classes or portions thereof, and those domains and/or certain
devices or applications within the domains may still further
only have the ability to create, modity, or delete particular
portions of the objects for those particular classes.

In some examples, model specification 18 is universal and
each of domains 10A-10C has the same, complete model
specification. In some examples, only a portion of model
specification 18 is visible to each of domains 10A-10C, where
the portion of model specification 18 that is visible is unique
to each of domains 10A-10C and defined by which portions of
model specification 18 is relevant to the given domain. In
other examples, the entirety of model specification 18 is vis-
ible to each of domains 10A-10C. A more detailed example is
provided below.

CDOM controllers 14 within each protected subsystem 8
of each domain 10 controls the publication of information
from their respective domain 10 to each of the other domains

10

15

20

25

30

35

40

45

50

55

60

65

8

in compliance with model specification 18. For example, in
response to changes to a portion of a cross-domain object
within domain 10A, CDOM controller 14A propagates sani-
tized versions of the changes to other domains 10B and 10C
in compliance with model specification 18, as described in
greater detail below. Although illustrated in FIG. 1 as separate
from the objects, the functionality of CDOM controller 14
may be distributed throughout and implemented within the
objects instantiated within each of the respective domains 10.

As such, when CDOM controller 14 is propagating
changes to the other domains, CDOM controller 14 may first
determine which changes, if any, need to be propagated to
each domain. For instance, say CDOM controller 14 detects a
change in two separate variables in a particular object. In one
example, model specification 18 may indicate that domain
10B has full access to both variables. As such, CDOM con-
troller 14 may send an update to the CDOM controller in
domain 10B to notify the CDOM controller of the update to
both variables. In another example, model specification 18
may indicate that domain 10C has full access to only one of
the two altered variables and no access to the other altered
variable. As such, CDOM controller 14 may only send an
update to the CDOM controller in domain 10C to notify the
CDOM controller of the update to the variable that domain
10C has full access to. In yet another example, it a domain
only can access a sign for the two variables (positive, nega-
tive, zero), CDOM controller 14 may only send an update to
the corresponding CDOM controller in the domain if the sign
for either variable has changed, and the update may only
include the sign information rather than complete informa-
tion regarding the variable.

Any of protected subsystems 8A-8C may execute tech-
niques of this disclosure. Protected subsystems 8B and 8C,
though represented without subcomponents in FIG. 1, may
include similar subcomponents as those shown in protected
subsystem 8A. For example, protected subsystems 8B and 8C
may also include an interface 12, CDOM controller 14, pro-
tected nodes 16, model specification 18, and object repository
20, though the versions of these subcomponents in protected
subsystems 8B and 8C may not be exactly the same as the
corresponding version in protected subsystem 8A. For
instance, each of protected subsystems 8B and 8C may have
copies of or otherwise access the same model specification 18
that is present in protected subsystem 8A, but may have a
different portion of the model specification that is visible to
the client. For the example of FIG. 1, each of the subcompo-
nents is described with respect to protected subsystem 8A,
although these subcomponents could also exist in protected
subsystems 8B and 8C. Further, protected subsystems 8 A-8C
may include other parts that are not shown in FIG. 1, such as
a security structure or various input or output devices.

Protected subsystem 8A may include an interface 12 for
connecting protected subsystem 8A with an outside Internet
network and/or an intranet network within domain 10A.
Interface 12 may be a hardware component, such as a network
orinterface card, or it may be a software component. Interface
12 may connect protected subsystem 8A to an outside net-
work via Ethernet, token-ring, FDDI, SONET, 3G or 4G,
wireless Wi-Fi®, or Bluetooth®.

Interface 12 of subsystem 8 exchanges sanitized messages
24 with similar interfaces of subsystems 8B, 8C via guards
22A-22C. These sanitized messages 24 may include an
instruction from CDOM controller 14A of protected sub-
system 8A to update the overall object model of network
system 2, allowing protected subsystems 8B and 8C to update
the state of corresponding objects stored in the respective
object repository, so long as the instructions follow the

US 9,191,391 B1

9

restrictions of model specification 18. Interface 12 may craft
the sanitized messages 24 such that the instruction to each
domain only contains instructions to update the portion of the
object model that the respective domain has access to. The
messages may also be delayed messages, or messages that
include an instruction to perform a technique after a prede-
termined amount of time.

In some example implementations, each CDOM controller
14 of each domain 10 includes an annotation processor that
parses model specification 18 and enforces the specifications
set forth therein. In other examples, a compiler may be used to
compile model specification 18 and generate object code for
execution within each of domains 10, where the object code
provides executable code or libraries for implementing the
object classes for the cross-domain objects. Moreover, in
some examples, the compiler may generate respective, differ-
ent versions of the object code, each version generated spe-
cifically for a respective one of network domains 10A-10C
such that object instances within those domains only contain
or otherwise expose fields of the cross-domain objects in
accordance with the restrictions specified by cross-domain
model specification 18. In some examples, the object code
generated for each of domains 10A-10C may include, e.g.,
within each object, functionality for controlling communica-
tion of the fields of the objects to the other domains in accor-
dance with model specification 18.

The following illustrates an example cross-domain model
specification:

@Model (creators=""DOMAIN A”)

class Geo {

@Read(“DOMAIN A DOMAIN B”) @Write(“DO-
MAIN A”) int degrees;

@Read(“DOMAIN A”) @Write(“DOMAIN A”) float
fraction;

@Model(creators="DOMAIN A, DOMAIN B”) public
class Blue {
@Read(“DOMAIN A DOMAIN B”) @Write(“DO-
MAIN A, DOMAIN B”)
public Geo loc;

The example cross-domain model specification set forth
above specifies class definitions for two classes: Geo and
Blue.

With respect to the Geo class definition, in accordance with
the techniques described herein, the example model specifi-
cation uses the annotation @Model(creators=“"DOMAIN A”)
is applied to the Geo class to specify that this class is part of
the cross-domain model, and that any new objects of this type
are to be cross-domain objects and that the objects can only be
created within the specifically named domains, i.e.,
DOMALIN A in this example. That is, untrusted clients and
applications in this domain can invoke an object process or
other API so as to cause a new object instance of Geo to be
created within the corresponding protected subsystem. More-
over, any new instance of the Geo object appears in all
domains, but the respective copies of the object instance may
appear differently in each of the domains. In this example, a
client in the DOMAIN A domain may invoke creation of a
new Geo object. Clients in the DOMAIN B domain cannot
create instances of the Geo object, but, they can see the new
Geo objects that are created and mirrored to their object
repository from DOMAIN A.

Conversely, the example model specification uses the
annotation @Model(creators="DOMAIN A, DOMAIN B”)
applied to the Blue class to specify that this class is part of the

25

30

35

40

45

10
cross-domain model, and that any new objects of this type can
be created within the DOMAIN A or DOMAIN B domains.

In the example above, the model specification provides
flexibility such that, as illustrated in the example, an object of
one type (e.g., Blue) can be created in a set of domains (e.g.,
Domain A and Domain B in this example) but includes a
variable of a type (e.g., Geo) that can be created in a different
or subset of the domains (e.g., only Domain A in this
example). As such, in response to a client application within
DOMAIN B creating a new object of type Blue, a CDOM
controller with DOMAIN B may apply policies to require the
client application provide or otherwise identify an existing
object of type Geo for use as the loc variable, where the
existing object was originally created in DOMAIN A in
accordance with the model specification and for which an
instanceis available to other domains, including DOMAIN B,
via the distributed object model.

In one example implementation, each class for a cross-
domain object is defined within the model specification to
include a table or other data structure to store identifiers for all
instances of the object of that class created throughout the
multiple network domains, and this data structure is acces-
sible in each domain. As such, when creating an object
instance within a given domain, an invoking client applica-
tion can access the table to identify any needed object (e.g.,
the Geo object) that had been created earlier in a different
domain.

As another example, the CDOM controller within
DOMAIN B may provide default values or null values for the
entire object as specified by rules or portions of the model
specification. Further, in some example system, policies or
rules may be specified within the model specification so as to
define default values for individual fields and/or marking
individual fields of objects as optional. As such, the CDOM
controller in each domain may apply the rules to permit
objects of a given class to be created to include fields of the
object class even though only portions of the object are visible
to clients within that domain according to the domain model.
The fields not available in a given domain may, for example,
be created in accordance with the default values or null values
by the CDOM controller of the domain in which the object is
being created, and object instances in other domains may
have access to and modify the fields in accordance with the
domain model.

Further, in the example model specification, @Read(“DO-
MAIN A, DOMAIN B”) and @Write(*DOMAIN A”) anno-
tations can be applied to the individual fields defined by
model classes. The @Read annotation is used to indicate to
which specific domains a given field is visible and accessible
for a cross-domain object class. In this example, the field
“degrees” is visible in both DOMAIN A and DOMAIN B
domains. That is, the version of a Geo object that is sanitized
for the DOMAIN A domain, or sanitized for the DOMAIN B
domain, will contain this field and such field will be readable
by clients in those domains. The @ Write annotation indicates
in which domains the field can be modified. In this example,
clients in the DOMAIN A domain but not the DOMAIN B
domain can use an interface to change the value of this field.
Such changes, initiated in the DOMAIN A domain, will
propagate and be visible in the DOMAIN B domain.

As another example, the following model specification
defines a class of cross-domain objects in which neither
domain will contain complete portions of the cross-domain
objects instances of the whole object class. As such, for each
object instance, the entire cross-domain object only exists as
an aggregation of the portions of the cross-domain object
stored within the plurality of network domains.

US 9,191,391 B1

11
@Model (creators=""DOMAIN B”)
class Geo {
@Read(“DOMAIN A”) @Write(“DOMAIN A”) int
degrees;
@Read(“DOMAIN B”) @Write(“DOMAIN B”) float
fraction;

In this example, for objects of the class Geo, only object
instances within DOMAIN A will include the field degrees
and only object instances within DOMAIN B will include the
field fraction. In such an example, a CDOM controller in
DOMALIN B, where objects of type Geo can be created, may
insert a default or null value for the degrees field since the
degrees field cannot be accessed from DOMAIN B and does
not exist in objects from DOMAIN B within DOMAIN B.
In one example, CDOM controllers operate to provide a dis-
tributed search functionality for interrogating and manipulat-
ing the “whole” model; for example, to search for objects in
the model with certain characteristics even though no indi-
vidual domain necessarily includes complete object instances
for the class.

As another example, the following model specification
defines a class of objects in which only a subset of the
domains are made aware of the existence of object of a given

class.
@Model(creators="DOMAIN A”, class visible
in="DOMAIN A”)
class Geo {
@Read(“DOMAIN A”) @Write(“DOMAIN A”) int
degrees;
@Read(“DOMAIN A”) @Write(“DOMAIN A”) float
fraction;

Inthis example, objects of the type Geo may be created within
DOMALIN A and even the existence of those object instances
are only recorded within the table or data structure of the class
with DOMAIN A. That is, the existence of those objects is
only known within DOMAIN A.

FIG. 2 is a flow diagram illustrating example operations of
a computing device in accordance with one or more aspects of
the present disclosure. In one example technique of this dis-
closure, a first computing device (e.g., CDOM controller 14
of protected subsystem 8A) in a first domain (e.g., domain
10A) of a plurality of domains (e.g., domains 10A-10C) may
receive an instruction (e.g., a request) from a second comput-
ing device (e.g., a computing device running client applica-
tion 4A) (42). The instruction may comprise an interaction
with an object model. The instruction may be a request from
the client computing devices within the network domain for
an action (created, read, write, delete) to be applied to the
respective portion of a cross-domain object stored within the
repository of that respective network domain.

The first computing device, e.g., the CDOM controller,
verifies that the instruction complies with a model specifica-
tion (e.g., model specification 18) (44). In response to affir-
matively verifying that the instruction complies with the
model specification, the first computing device executes the
instruction (46). Otherwise, the action is rejected (45).

In addition, the CDOM controller within a network domain
determines the changes resulting from any actions applied to
any of the cross-domain objects within the respective protect
object repository (48), and propagates the changes to the
controllers of the other domains in accordance with a cross-
domain object model specification (50).

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any combi-
nation thereof. If implemented in software, the functions may

10

15

20

25

30

35

40

45

50

55

60

65

12

be stored on or transmitted over, as one or more instructions
or code, a computer-readable medium and executed by a
hardware-based processing unit. Computer-readable media
may include computer-readable storage media, which corre-
sponds to a tangible medium such as data storage media, or
communication media including any medium that facilitates
transfer of a computer program from one place to another,
e.g., according to a communication protocol. In this manner,
computer-readable media generally may correspond to (1)
tangible computer-readable storage media which is non-tran-
sitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media
that can be accessed by one or more computers or one or more
processors to retrieve instructions, code and/or data structures
for implementation of the techniques described in this disclo-
sure. A computer program product may include a computer-
readable medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and microwave,
then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio, and microwave
are included in the definition of medium. It should be under-
stood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves,
signals, or other transient media, but are instead directed to
non-transient, tangible storage media. Disk and disc, as used
herein, includes compact disc (CD), laser disc, optical disc,
digital versatile disc (DVD), floppy disk and Blu-ray disc,
where disks usually reproduce data magnetically, while discs
reproduce data optically with lasers. Combinations of the
above should also be included within the scope of computer-
readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs), general
purpose microprocessors, application specific integrated cir-
cuits (ASICs), field programmable logic arrays (FPGAs), or
other equivalent integrated or discrete logic circuitry. Accord-
ingly, the term “processor,” as used herein may refer to any of
the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addi-
tion, in some aspects, the functionality described herein may
be provided within dedicated hardware and/or software mod-
ules configured for encoding and decoding, or incorporated in
a combined codec. Also, the techniques could be fully imple-
mented in one or more circuits or logic elements.

The techniques of this disclosure may be implemented in a
wide variety of devices or apparatuses, including a wireless
handset, an integrated circuit (IC) or a set of ICs (e.g., a chip
set). Various components, modules, or units are described in
this disclosure to emphasize functional aspects of devices
configured to perform the disclosed techniques, but do not
necessarily require realization by different hardware units.
Rather, as described above, various units may be combined in
a codec hardware unit or provided by a collection of intraop-
erative hardware units, including one or more processors as
described above, in conjunction with suitable software and/or
firmware.

US 9,191,391 B1

13

Various examples of the disclosure have been described.
These and other examples are within the scope of the follow-
ing claims.

The invention claimed is:

1. A system comprising:

a plurality of network domains, each of the domains com-
prising a respective set of client computing devices com-
prising a respective one or more processors executing
respective instances of at least one software application;

a cross-domain object model specification that specifies
object classes for cross-domain objects, each of the
objects having methods comprising code executable by
the applications for accessing a plurality of data fields of
the object;

a protected and distributed object repository positioned
within each of the network domains; and

a controller within each of the network domains,

wherein, for each of the object classes, the cross-domain
object model specification defines the plurality of data
fields and specifies which of the data fields of the respec-
tive object class can be exposed to each of the respective
network domains,

wherein each of the object repositories stores an authorized
portion of each of the cross-domain objects in accor-
dance with the cross-domain object model specification,
and

wherein the controller within each of the network domains
detects changes to the portions of the cross-domain
objects within the respective one of the network domains
and propagates versions of the changes to the controllers
of'the other ones of the network domains in compliance
with cross-domain model specification.

2. The system of claim 1, wherein the cross-domain object
model specification conforms to a syntax having an annota-
tion for designating an object class as a cross-domain object
class for which objects created according to the object class
are to have a scope that spans the network domains.

3. The system of claim 1, wherein the cross-domain object
model specification conforms to a syntax having an annota-
tion for specifying which one or more of the network domains
an associated field of the object class is to be exposed.

4. The system of claim 1, wherein the cross-domain object
model specification conforms to a syntax having an annota-
tion for specifying a degree of precision a data field is to be
exposed to a specific one of the network domains.

5. The system of claim 1, wherein the cross-domain object
model specification conforms to a syntax having an annota-
tion for specifying which actions may be applied to the cross
domain object class within each of the respective network
domains.

6. The system of claim 1, wherein the cross-domain object
model specification conforms to a syntax having an annota-
tion for specifying that the existence of cross-domain objects
created in accordance with the object class can only be known
in specified ones of the network domains.

7. The system of claim 1 further comprising a controller
within each of the network domains that detects changes to
the portions of the cross-domain objects within the respective
one of the network domains and propagates versions of the
changes to the controllers of the other ones of the network
domains in compliance with cross-domain model specifica-
tion.

8. The system of claim 7, further comprising a compiler
configured to compile the cross-domain object model speci-
fication and generate object code for execution within each of
the plurality of domains.

15

25

35

40

45

65

14

9. The system of claim 7,

wherein each of the controllers operate to create new cross-
domain objects in conformance with the cross-domain
object model, and

wherein, when creating the new objects, the controllers

provide default values for any of the data fields not
exposed to the respective domain in accordance with the
cross-domain model specification.

10. The system of claim 1,

wherein each of the cross-domain objects is defined within

the model specification to include a data structure to
store identifiers for all instances of objects of that object
class created throughout the plurality of network
domains, and

wherein the data structure is accessible in each of the

network domains.

11. The system of claim 1, wherein, for at least one of the
cross-domain objects, none of the object repositories contain
a complete portion of the object such that the entire object
only exists as an aggregation of the portions of the cross-
domain object stored within the plurality of network domains.

12. A method comprising:

storing, within a protected and distributed object repository

positioned within each of a plurality of network
domains, a plurality of cross-domain objects, wherein
each of the object repositories stores an authorized por-
tion of each of the objects in accordance with the cross-
domain object model specification, each of the objects
having methods comprising code executable by the
applications for accessing a plurality of data fields of the
object;

detecting, with respective controllers within each of the

network domains, changes made to any of the cross-
domain objects within the respective protect object
repository; and

propagating, with the respective controllers, versions of the

changes to the controllers of the other domains in accor-
dance with a cross-domain object model specification,
wherein, for each of the object classes, the cross-domain
object model specification defines a plurality of data
fields and specifies which of the data fields of the respec-
tive object class can be exposed to each of the respective
network domains.

13. The method of claim 12, further comprising

receiving, with each of the controllers, requests from client

computing devices within the network domain for
actions to be applied to the respective portions of the
cross-domain objects stored within the repositories of
the respective network domains; and

controlling, with the controllers, application of the actions

to the respective portions of the cross-domain objects in
accordance with the cross-domain model specification.
14. The method of claim 13,
wherein the cross-domain object model specification con-
forms to a syntax having an annotation for designating
an object class as a cross-domain object class for which
objects created according to the object class are to have
a scope that spans the network domains, and

wherein controlling, with the controllers, application of the
actions comprises instantiating the objects as cross-do-
main objects in accordance with the annotation.

15. The method of claim 13,

wherein the cross-domain object model specification con-

forms to a syntax having an annotation for specifying
which one or more of the network domains an associated
field of the object class is to be exposed, and

US 9,191,391 B1

15

wherein controlling, with the controllers, application of the
actions comprises controlling reading and writing of the
field of the cross-domain object in accordance with the
annotation.

16. The method of claim 13,

wherein the cross-domain object model specification con-

forms to a syntax having an annotation for specifying a
degree of precision a data field is to be exposed to a
specific one of the network domains, and

wherein controlling, with the controllers, application of the

actions comprises controlling reading and writing of an
attribute of the field of the cross-domain object in accor-
dance with the annotation.
17. The method of claim 13, wherein the cross-domain
object model specification conforms to a syntax having an
annotation for specifying which actions may be applied to the
cross domain object class within each of the respective net-
work domains.
18. The method of claim 13,
wherein the cross-domain object model specification con-
forms to a syntax having an annotation for specitying
that the existence of cross-domain objects created in
accordance with the object class can only be known in
specified ones of the network domains, and
wherein controlling, with the controllers, application of the
actions comprises controlling, in each of the network
domains, access to an identifier indicative of an exist-
ence of the cross-domain object in accordance with the
annotation.
19. A cross-domain object model controller comprising a
processor configured to:
detect changes made to any of a plurality of cross-domain
objects in a protected and distributed object repository,
wherein each of the objects comprises an authorized
portion of a cross-domain object for a respective one of
a plurality of network domains in accordance with the
cross-domain object model specification, each of the
objects having methods comprising code executable by
the applications for accessing a plurality of data fields of
the object;
propagate versions of changes to controllers of the other
network domains in accordance with the cross-domain
object model specification, wherein, for each of the
object classes, the cross-domain object model specifica-
tion defines a plurality of data fields and specifies which
of the data fields of the respective object class can be
exposed to each of the respective network domains.
20. The controller of claim 19, wherein the processor is
configured to:
receive requests from client computing devices within the
network domain for actions to be applied to the respec-
tive portions of the cross-domain objects stored within
the repositories of the respective network domains; and

control application of the actions to the respective portions
of the cross-domain objects in accordance with the
cross-domain model specification.
21. The controller of claim 20,
wherein the cross-domain object model specification con-
forms to a syntax having an annotation for designating
an object class as a cross-domain object class for which
objects created according to the object class are to have
a scope that spans the network domains; and

wherein, in response to the requests, the controller instan-
tiates the objects as cross-domain objects in accordance
with the annotation.

35

40

45

55

60

16
22. The controller of claim 20,
wherein the cross-domain object model specification con-
forms to a syntax having an annotation for specifying
which one or more of the network domains an associated
field of the object class is to be exposed, and
wherein, in response to the requests, the controller controls
reading and writing of the field of the cross-domain
object in accordance with the annotation.

23. The controller of claim 20,

wherein the cross-domain object model specification con-

forms to a syntax having an annotation for specifying a
degree of precision a data field is to be exposed to a
specific one of the network domains, and

wherein, in response to the requests, the controller is con-

figured to control reading and writing of an attribute of
the field of the cross-domain object in accordance with
the annotation.

24. The controller of claim 20, wherein the cross-domain
object model specification conforms to a syntax having an
annotation for specifying which actions may be applied to the
cross domain object class within each of the respective net-
work domains.

25. The controller of claim 20,

wherein the cross-domain object model specification con-

forms to a syntax having an annotation for specifying
that the existence of cross-domain objects created in
accordance with the object class can only be known in
specified ones of the network domains, and

wherein, in response to the request, the controller controls

access to an identifier indicative of an existence of the
cross-domain object in accordance with the annotation.

26. The controller of claim 19, wherein each of the con-
trollers includes an annotation processor that parses the
model specification and enforces specifications set forth
therein.

27. The controller of claim 19,

wherein controller operates to create new cross-domain

objects in conformance with the cross-domain object
model, and

wherein, when creating the new objects, the controller

provides default values for any of the data fields not
exposed to the respective domain in accordance with the
cross-domain model specification.

28. The controller of claim 19,

wherein each of the cross-domain objects is defined within

the model specification to include a data structure to
store identifiers for all instances of objects of that object
class created throughout the plurality of network
domains, and

wherein the data structure is accessible in each of the

network domains.

29. The controller of claim 19, wherein, for at least one of
the cross-domain objects, none of the object repositories con-
tain a complete portion of the object such that the entire object
only exists as an aggregation of the portions of the cross-
domain object stored within the plurality of network domains.

30. A non-transitory computer-readable storage medium
storing commands that, when executed, cause one or more
processors of a computing device to:

receive requests from client computing devices within a

network domain for application of actions to portions of
cross-domain objects stored within the network domain
in a protected and distributed object repository, wherein
each of the cross-domain objects comprises an autho-
rized portion of a respective cross-domain object in
accordance with a cross-domain object model specifica-
tion, each of the objects having methods comprising

US 9,191,391 B1
17

code executable by the applications for accessing a plu-
rality of data fields of the object, wherein the cross-
domain object model specification defines a plurality of
data fields for object classes for the cross-domain
objects and specifies which of the data fields of the 5
respective object class can be exposed to each of the
respective network domains;

control application of the actions to the portion of the
cross-domain objects stored within the network domain
in accordance with the cross-domain model specifica- 10
tion;

detects changes to the portion of the cross-domain objects
within the network domain; and

propagate versions of the changes of the portion of the
cross-domain objects stored within the network domain 15
to one or more controllers of the other network domains
in accordance with the cross-domain object model
specification.

